Using knowledgebases of structure-activity-data, receptor-site and protein structural similarity to generate new matter ideas

Steven Muskal, Ph.D.

Chief Executive Officer Eidogen-Sertanty, Inc. smuskal@eidogen-sertanty.com

Bollen J (March 2009) - Clickstream Data Yields High-Resolution Maps of Science

Protein Structure Growth Continues

~ 60K Structures/co-complexes (July-2009)

> 600 deposits per month → >150/week!

PDB Growth source: rcsb.org

Year

Drugs Developed using Structural Knowledge

Inhibitor/Drug	Disease	Company(s)	Protein targeted	Enzyme Family
STI-571/Gleevec	Chronic Myeloid Leukemia	Novartis	c-Abl kinase	Tyrosine kinase
Fluoroquinolone/Ciprofloxacin	Bacterial infection	Bayer	Gyrase	ATP Hydrolase
Saquinavir/Invirase, Ritonavir/Norvir, Indinavir/ Crixivan, Nelfinavir/Viracept, Amprenavir/Agenerase, Fosamprenavir/Lexiva,	AIDS	Roche, Abbott, Agouron, Merck, Vertex	HIV-1 Protease	Aspartylprotease
Trusopt	Glaucoma	Merck	Carbonic Anhydrase	Lyase
Thymitaq	Cancer	Agouron	Thymidylate synthase	Methyl transferase
Celecoxib/Celebrex, Rofecoxib/Vioxx	Inflammation, rheumatoid arthritis	Searle, Merck	Cox-2	Oxidoreductase
AG3340/Prinomastat	Cancer	Agouron	Matrix metalloprotease	Metalloprotease
Oseltamivir phosphate/Tamiflu, Zanamivir/Relenza	Influenza	Roche	Neuraminidase	Glycosidase

TIP Content and Algorithm Engine

• Interrogating the druggable genome with structural informatics MolecularDiversity (2006)

• STRUCTFAST: Protein Sequence Remote Homology Detection and Alignment Using Novel Dynamic Programming and Profile-Profile Scoring Proteins. 2006 64:960-967

• StructSorter: A Method for Continuously Updating a Comprehensive Protein Structure Alignment Database J. Chem. Inf. Model. 2006, 46, 1871-1876

• Convergent Island Statistics: A fast method for determining local alignment score significance. Bioinformatics, 2005, 21, 2827-2831.

Kinase SAR Knowledgebase (KKB) – Hot Targets

Eidogen-Sertanty KKB SAR Data Point Distribution

> 415,000 SAR data points curated from> 5800 journal articles and patents

Kinase SAR Naïve Bayse Models

Define query conditions for patents

Assay Target:

GSK3B

Select Patent Assignee:

Thouin, Eryk	~	
VERTEX PHARMACEUTICALS INC.		
VERTEX PHARMACEUTICALS INCORPORATED		
Vertex Pharmaceutical Incorporated		
Vertex Pharmaceuticals Incorporated		
YUYU Inc.	~	•
		_

and optionally filter by substructure:

Search

15 Patent(s) for the queried conditions:

Assay target = GSK3B and Patent assignee in (VERTEX PHARMACEUTICALS INC., VERTEX PHARMACEUTICALS INCORPORATED, Vertex Pharmaceutical Incorporated, Vertex Pharmaceuticals Incorporated)

Datont	assignee	#molecules	Include in SAR analysis	Represe	entative Compounds									
Thiazole Compounds Use as Inhibitors of Protein Kinase	VERTEX PHARMACEUTICAL INC.	s 95	include			Î				NH N	∑ Lo			
Pyrazole Compounds Use as Protein Kinas Inhibitors: Triazo Compounds Use as Protein Kinas Inhibitors	Vertex Pharmaceuticals Incorporated	270	include		$\begin{array}{c} \text{Lister 2 (15)} \\ \text{Lister 2 (15)} \\ \text{Lister 1 (45)} \\ \text{Lister 1 (45)} \\ \end{array}$		Cluster 3 (10) $ \begin{array}{c} $		ег 4 (16)	Cluster 5 ((4) () 13)	_		
Pyrazole Compounds Use as Protein Kinas Inhibitors	VERTEX PHARMACEUTICAL INCORPORATED	s 261	include	ļ			NH NH			WNH N				
	OPEN T	ABLE OF PROTO	COLS		Export to SDfile			Ē	xport to Accore	dadf				
	SAVE DE						NEW/SEADC							
Heterocyclic	Cooreb for Deferen	an Identifier - 100	00061			-	NEW OLANC							
and Uses Ther	Search for Relefer	ce identifier = 100	00001				100							
	DATENT	Thiazala Compound	de Lleeful ee Inhibitere of I	Protoin K	Refe	erence Informatio	n							
	PATENT ABSTRACT	The thiazole compound	ounds of present invention	are inhib	bitors of protein kinases, particularly									
	_	inhibitors of GSK3,	Aurora2, and Syk mamm	, and Syk mammalian protein kinases. The invention also										
		invention and metho	ods of utilizing those comp	pounds a	comprising the compounds of the and compositions in the treatement									
Compositions		of various protein ki	inase mediated disorders											
Useful as Inhib	PATENT_KEYWORD	Aurora2, GSK3, Sy	k, AURKA, thiazol derivat	ives, seri	ine/threonine kinase									
(B) (C) (C)	INVENTORS	John Cochran(4 Ph	ilips Farm Road Marshfe	ATT2/05/	//2002)2050 (US)) Suganthini Nanthakumar/253 Spier	s Road Newton M	A 02459 (US)) Edm	und Harrington(460 Ea	st 8th Street Sou	th Boston MA 02127	(US)) Jian Wang(25	South Point		
		Drive, Boston, MA	02125 (US).)								(oo)//,ordin (realig(20			
	ASSIGNEE	VERTEX PHARMA	CEUTICALS INC. (Andrew	s S. Mar	rks, 130 Waverly Street, Cambridge, MA02139-	4242 (US).)								
	#_Molecule	nrid I	Molecule	MW	Protocol Specification	Biological	Activity	Assay Type	Assay Species	Assay CellLines	Assay Targets	Assay Group		
Heteroaryl Compounds Us as Inhibitors of	1	<u>4193766</u>		396.41	GSK3B Kinase Inhibition (10000121) SYK Kinase Inhibition Assay (10000118) Aurora2 Kinase Inhibition Assay (10000117)	Ki < 0.1 uf IC50 < 0.5 IC50 < 0.5	M uM uM	Enzyme Assay Enzyme Assay Enzyme Assay			GSK3B SYK AURKA			
<u>GSK-3</u> SAR ana	2	4194262		344.43	GSK3B Kinase Inhibition (10000121)	Ki < 0.1 ul	И	Enzyme Assay			GSK3B			
	3	4194335		398.40	GSK3B Kinase Inhibition (10000121)	Ki < 0.1 ul	и —	Enzyme Assay			GSK3B			
	ا <u>لارد، با من الما</u>	J		230.30				Lizyine risay						
	~													

Patent	assignee	#molecules			Repre	sentative Compou	nds in selected patents		
Compositions Useful as Protein Kinase Inhibitors	Vertex Pharmaceuticals Incorporated	67	NH N JUH						Chiral
			Cluster 1 (13)	Cluster 2 (112)	Cluster 3 (5)	Cluster 4	(4) Cluster 5	4) Cluster 6 (32)	Cluster 7 (3)
Inhibitors of c-Jun N- Terminal Kinases (JNK) and Other Protein Kinases	Vertex Pharmaceuticals Incorporated	165	Cluster 1 (34)	NH N Cluster 2 (30)		Cluster 4(14)	Cluster 5 (7)	Cluster 6 (6)	6) Cluster 8(6)

Select among one of the detected common scaffolds for these representative compounds or enter your own scaffold query for SAR analysis:

100% of representative

SAR analysis

SAR Table for core in patents

223 compounds in patent with this scaffold series structure

Accelrys Kinome Viewer with Eidogen-Sertanty KKB

Saccelrys | Kinome Viewer with the Kinase Knowledgebase (KKB) | Dielegen-Sertanty

Science

This phylogenetic tree depicts the relationships between members of the complete superfamily of human protein kinases. Protein kinases constitute one of the largest human gene families and are key regulators of cell function. The 518 human protein kinases control protein activity by catalyzing the addition of a negatively charged phosphate group to other proteins. Protein kinases modulate a wide variety of biological processes, especially those that carry signals from the cell membrane to intracellular targets and coordinate complex biological functions. The main diagram illustrates the similarity between the protein sequences of these catalytic domains. Each kinase is at the tip of a branch, and the similarity between various kinases is inversely related to the distance between their positions on the tree diagram. Most kinases fall into small families of highly related sequences, and most

families are part of larger groups. The seven major groups are labeled and colored distinctly. Other kinases are shown in the center of the tree, colored gray. The relationships shown on the tree can be used to predict protein substrates and biological function for many of the over 100 uncharacterized kinases presented here. The inset diagram shows trees for seven atypical protein kinase families. These proteins have verified or strongly predicted kinase activity, but have little or no sequence similarity to members of the protein kinase superfamily. A further eight atypical protein kinases in small families of one or two genes are not shown.

AGC C

branching pattern was built from a neighbor-joining tree derived from a ClustalW reference to other alignment and tree-building methods (hmmalign and parsimony trees) and by extensive parameters invice sequence alignment of kinase domains. The curved layout was created manually. Many branch lengths are semiquantitative, but the branching pattern is more informative than any single automatic method. The atypical kinase trees were generated automatically by ClustalW alignment of full-length protein sequences followed by neighbor-joining tree building. Unpublished divergent kinases retain a numerical SgK (Sugen kinase) accession number. The second domains of dual-domain kinases are named with a "-b" suffix. Detailed subtrees and sequence alignments of individual groups and families, and comparative genomic trees are available at http://www.kinase.com. Information on

Authors Genard Manning, David B. Whyte, Ricardo Martinaz, Sucha Sudarsanam, Sugen Inc., South San Francisco, CA, USA; Tony Hunter, Salk Institute, La Jolla, CA, USA. This poster accompanies the paper "The Protein Kinase Complement of the Human Genome" (Manning *et al., Science*, 6 December 2002). Science coordinator L. Bryan Ray Design and production Anne Ashley, David Comb, Michael Melnick, C. Faber Smith, J. White, David M. Tompkins, Marcus Spiegler Copyeditor Harry Jach Sponsored by Cell Signaling Technology, Inc. and Sugen, Inc.

© 2002 Science, a publication of the American Association for the Advancement of Science

Kinase Domain Sequence Similarities - MST

Local site similarity – MST

Example: PhysChem SiteSim vs. Domain Seq ID

- STE_STE20_HGK (MAP4K4): template 1u5rA •
- TK_Musk_MUSK (MUSK) : template 1ir3A
- Full Sequence identity: 0.22 Site Sequence identity: 0.55
- Normalized (physicochemical) site similarity: 0.84

.VGNGTY.V.A.K.M.E.A.MEFC.AGS.D.D.QN.L.D MAP4K4 .IGEGAF V A K - E V FEYM -GD - N -N L D MIISK

MAP4K4 and MUSK Small Molecule Inhibitors

LigandCross: Shuffling Ligand Functionality

Similar to Vertex's BREED: J. Med. Chem. 47, 2768 (2004)

LigandCross Workflow

New Molecules via LigandCross

DS-LibDock Results DS-Visualize Results

Step 1: Find Co-complexes and Sites from Ligand-Structure-Search

Molecule	ligname	similarity	pdbcode	siteeid	FourCode	pdbID	pdbBnxNumber	proteinld	title	classification	source	compound	releaseDate	journalTitle	journalReference	exptype
	STI	1	2pi0A	1309707	2010	2010	1305799	42526	LCK BOUND TO MATINB	TRANSFERASE	MOL_D: 1; ORGANISM_SCIENTIFIC: HOMO SAPIENS; ORGANISM_COMMON: HUMAN; GENE:LCK; EXPRESSION_SYSTEM: SPODOPTERA FRUGIPERDA; EXPRESSION_SYSTEM_COMMON: FALL ARMYWORM; EXPRESSION_SYSTEM_VECTOR_TYPE: ION_SYSTEM_PLASMID:	MOL_ID: 1; MOLECULE: PROTO- ONCOGENE PROTEIN KINASE LCK; CHAIN: A; FRAGMENT: PROTEIN KINASE; SYNONYM: P56-LCK, LYMPHOCYTE CELL- SPECIFIC PROTEIN- TY/ROSINE KINASE, LSK, T CELL- SPECIFIC PROTEIN- TY/ROSINE KINASE; EC: 2.7.10.2; ENGINEERED: YES	09-OCT-07	CLASSIFYING PROTEIN KINASE STRUCTURES GUIDES USE OF LIGAND- SELECTIVITY PRODICTING TREDICT INACTIVE CONFORMATIONS: STRUCTURE OF LCK/IMATINIB COMPLEX	PROTEINS 2007	XRAY DIFFRACTION
	STI	1	20iqA	1146914	2oiq	2oiq	1125109	26318	STRUCTURE OF CHICKEN C-SRC KINASE DOMAIN IN COMPLEX WITH THE CANCER DRUG IMATINIB.	TRANSFERASE	; ORGANISM_SCIENTIFIC: GALLUS; M_COMMON: CHICKEN; GENE: ESCHERCHIA COLI; EXPRESSION_SYSTEM. EXCHERCHIA COLI; EXPRESSION_SYSTEM_COMMON: BACTERIA; EXPRESSION_SYSTEM_STRAIN: BL21DE3; EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID; EXPRESSION_SYSTEM_PLASMID: PET28	MOL_UD: 1; MOLECULE: PROTO- ONCOGENE TY/ROSINE- PROTEIN KINASE SRC; CHAIN; A, B; FRAGMENT: KINASE DOMAIN; SYNOIYYM: P60-SRC, C- SRC, PF60C- SRC, PF60C- SRC; FC: 2.7.10.2; ENGINEERED: YES	20-MAR-07	C-SRC BINDS TO THE CANCER DRUG IMATINIB WITH AN INACTIVE ABL/C-KIT CONFORMATION AND A DISTRIBUTED THERMODYNAMIC PENALTY.	STRUCTURE V. 15 299 2007	XRAY DIFFRACTION
	STI	1	2hyyA	918207	Zhyy	2hyy	904013	16961	HUMAN ABL KINASE DOMAIN IN COMPLEX WITH IMATINIB (STI571, GLIVEC)	TRANSFERASE	MOL_ID: 1; ORGANISM_SCIENTIFIC: HOMO SAPIENS; ORGANISM_COMMON: HUMAN; GENE: ABL1; EXPRESSION_SYSTEM: SPODOPTERA FRUGPERDA; EXPRESSION_SYSTEM_COMMON: FALL ARMYWORM	MOL_D: 1; MOLECULE: PROTO- ONCOGENE TYROSINE- PROTEIN KINASE ABL1; CHAIN: A, B, C, D; SYNONYM: P150, C-ABL, ABELSON MURINE LEUKEMIA VIRAL ONCOGENE HOMOLOG 1; EC: 2.7.10.2;	16-JAN-07	STRUCTURAL BIOLOGY CONTRIBUTIONS TO THE DISCOVERY OF DRUGS TO TREAT CHRONIC MYELOGENOUS LEUKAEMIA.	ACTA CRYSTALLOGR.,SECT.D V. 63 80 2007	XRAY DIFFRACTION

Step 2: Find Other Receptor Sites from <u>Site-Similarity</u> Search

Site Name	Locus	Ligand	%Cor	Af Sequence Positions	
pdb2pl0/s1309707 (chain A)	LCK	STI	100	.L.V.AVK.E.LM.L.LV.I.TEYM.GS.I.YIHR.L.IADF	-
pdb2ofv/s916548 (chain B)	LCK	242	100	. U. V. AVK. B. IM. B. IV. I. FEYN. G. I. Y. H. B. LADF. I	100
pdb2rl5/s1396160 (chain A)	-	2RL	100	LIG V.AVK.L.E.II.I.V.V.TEPCKFGN.L.CIR.L.ICDP	
pdb2e2b1/s1284639 (chain B)	ABL	406	100	L. Y. V. A. K. E. VY. I. LV. I. TEFMT. C. L. FIHRD. L. VADE	-

Step 3: LigandCross – Mixing Ligand Features from Aligned Sites

Example LigandCross Results

JEIdogen Sertanty

Step 4: LigandCross Ligands with Reported Biological Activity

		Kina	se Kno	wled	lgeb	base	e (pIC5	0)				Baye	sian M	lode	l Pre	edic	tions (PP)		
LC-ID	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	TEK	KIT	RAF1	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	TEK	KIT	RAF1
G2G_STI_12	6.7	8	8								0.40	0.90	0.76	0.81	0.59	0.15	0.89	0.45	0.70	0.37
900_STI_1	6.1	8	8								0.38	0.91	0.76	0.72	0.55	0.16	0.88	0.42	0.71	0.55
7MP_1N8_4				7.8	9	9.5	8.7				0.36	0.49	0.34	0.32	0.94	1.00	0.95	0.67	0.86	0.39
7MP_1N8_2				6.8	8.3	9.5	9				0.37	0.46	0.31	0.44	0.92	1.00	0.92	0.69	0.84	0.45
7MP_RAJ_3					8.4			8.4			0.35	0.73	0.50	0.49	0.92	0.81	0.86	0.94	0.74	0.37
7MP_GIN_4					7.6						0.16	0.50	0.40	0.82	0.95	0.67	0.70	0.41	0.76	0.51
242_C52_2									7.9		0.30	0.28	0.29	0.74	0.80	0.66	0.74	0.31	1.00	0.43
LI3_L11_1							7.2				0.31	0.73	0.55	0.84	0.74	0.69	0.62	0.36	0.76	0.85
608_GIG_7										6.1	0.28	0.61	0.57	0.69	0.93	0.50	0.60	0.68	0.85	0.50
KIN_BMU_4										6.1	0.31	0.43	0.45	0.78	0.75	0.57	0.77	0.33	0.81	0.25
G2G_KIN_3										6.1	0.25	0.51	0.52	0.75	0.89	0.59	0.64	0.43	0.84	0.43

DS-LibDock

Results

DS-Visualize

Results

Potent Kinase Inhibitors Docked (s1309707)

LigandCross Examples using "Added Diversity"

4343448_809_27:

CDK4: 6.80 CDK2: 5.63 CDK2: 6.12 CDC2: 5.58 CSK: 5.99 CDK5: 6.81 CDK4: 6.80 CDK2: 5.63 CDK2: 6.12 CDC2: 5.58 CDK4: 6.80

4272835_2425813_23: PTPN1: 4.24 PTPRA: 4.21

4363734_4291996_2: RAF1: 9.00 MAPK1: 5.29 BRAF: 8.05 BRAF: 8.52

4208857_4208857_1: FAK2: 8.22 KDR: 5.86 PDGFRB: 4.90 EGFR: 4.17 ERBB2: 5.23

900_STI_1: PDGFR: 8.00 PDGFR: 8.00 ABL: 6.10 PDGFRB: 8.00 PDGFR: 8.00 ABL: 6.10

242_A96_5: LCK: 9.40

242_MUH_1:

LCK: 9.40 TEK: 7.68 KDR: 8.22 MAPK14: 9.00 JAK3: 6.81

242_MUH_2:

KDR: 8.40 TEK: 8.40 TEK: 8.40 KDR: 8.40 TEK: 8.40 KDR: 8.40

406_STI_1:

BCR_ABL: 8.40 BCR_ABL: 5.30 LYN: 8.06 ABL1: 8.07 ABL1: 8.40

Ligand Functionality Shuffling across the Kinome

Generates novel compounds

- From 280 Unique Kinase co-Crystal ligands
- > 14,000 new unique structures are generated (HTS filter)

Drug- / lead-like novel compounds

Strict filtering (drug-/ lead-like; functional groups, properties)
 >2,153 unique compounds (64 pdb ligands pass the same filters)

Novel active compounds

- 380 reported kinase inhibitors are generated
- 268 are novel (not seen as input into the protocol)

Maximum similarity against pdb ligand input (ECFP4)

Conclusions

 Significant receptor-site similarities exist within and across target families

• The structurally resolved and modelable proteome is a very rich source for new matter ideas

 LigandCross can be an effective approach to generating novel, bioactive matter using co-complexes, known inhibitors, and/or fragment-based information.

Acknowledgements

- University of Miami
 - Stephan Schurer / Dusica Vidovic
- CNIO-Spain
 - Julen Oyarzabal/Obdulia Rabal
- Accelrys
 - Mori Masayuki
 - Shikha Varma / Ton van Daelen
 - Kush Kapila / Guillaume Paillard
 - June Snedecor

BollenJ (March 2009) -ClickstreamData Yields High-Resolution Maps of Science

LigandCross CAU/siteSimilar Ligands w/Docked BioActives

- Extract CAU/2RH1 Site (siteEID: 1276810) from TIP
- Issue siteSimilarity Search against siteEID: 1276810
- LibDock 20-30 Bioactive Molecules (beta1-adrenergic active + CAU similar)
- LigandCross CAU and siteSimilar Ligands w/Docked BioActives

TIP/SiteSimilarity Search – siteEID: 1276810 (CAU/2RH1)

Site Name	s1276810	
Source	PDB Co-crystal	RI)
Confidence	100%	
Resolution	XRAY	
Description	CAU: (2S)-1-(9H-Carbazol-4-yloxy)-3- (isopropylamino)propan-2-ol	CH3
Parent	2rh1A	I Сн ₃

Query: 2rh1A/s1276810		
Total Sites Found: 399		
Same-Fold Sites: 358	(89.7%)	
Dissimilar-Fold Sites: 41	(10.3%)	
Ligands: Predicted	354	(88.7%)
MGD	15	(3.8%)
NAD	11	(2.8%)
ATP	4	(1.0%)
Other	15	(3.8%)

Index	Superfamily Clusters	Family Clusters	Site Clusters	Sites	Description	Ligand Information	SiteSorter Range	%ID Range	Contact Range
1.	>	3	298	358	Beta-1 adrenergic receptor	Predicted: 350, P32: 4, RET: 3, TIM: 1	60-107	14-100	0.00-0.77
2.	>	1	2	15	PERIPLASMIC NITRATE REDUCTASE	MGD: 15	60-66	14-14	0.05-0.09
3.	>	1	2	4	PYRUVATE KINASE	ATP: 4	61-66	14-14	0.10-0.12
4.	>	1	2	2	4S-LIMONENE SYNTHASE	F3P: 1, FPG: 1	61-65	14-14	0.12-0.14
5.	>	1	11	11	PROTEIN (S-ADENOSYLHOMOCYSTEINE	NAD: 11	61-64	14-14	0.05-0.06
6.	×.	1	1	2	BIOTIN BIOSYNTHESIS CYTOCHROME P4:	Predicted: 2	63-64	14-14	0.00-0.00
7.	>	1	3	3	ALPHA-2,3/2,6-SIALYLTRANSFERASE/SIA	CSF: 3	60-63	14-19	0.09-0.12
8.	Š	1	1	2	ARSENITE OXIDASE	Predicted: 2	61-62	14-14	0.00-0.00
9.	Š	1	1	1	ASPARTATE AMINOTRANSFERASE	1ahgC: 1	62-62	14-14	0.06-0.06
10.	»	1	1	1	ACYL-COA OXIDASE	FAD: 1	60-60	14-14	0.06-0.06

Sequences Chains Sites	s Binding Mode	es				
	Desc	ription				Site Residue Conservation
Site Name	Locus	Description	%Conf	SiteSorter 📎	%ID	Non-polar Polar H-bond Polar/H-bond
pdb2rh1/s1276810 (chain A)	-	CAU: (2S)-1-(9H	100	-	-	.WT.DV.VT.F.T.YA.SS.SF.W.FF.N.Y.N.Y
pdb2vt4/s1421547 (chain B)	-	P32: 4-{[(2S)-3-(t	100	93.03	95	WT DV VT F T YA SS SF W FF N F N Y
pdb2vt4/s1421552 (chain C)	-	P32: 4-{[(2S)-3-(t	100	93.81	95	WT DV VT F T YA SS SF W FF N F N Y
pdb2vt4/s1421564 (chain C)	-	Predicted Site	78	104.37	95	WT DV VT F T YA SS SF W FF N F N Y
pdb3d4s/s1420913 (chain A)	-	Predicted Site	64	102.08	100	WT DV VT F t YA SS SF W FF N Y N Y
pdb3d4s/s1420907 (chain A)	-	TIM: (2S)-1-(tert	100	97.93	100	WT DV VT F T YA SS SF W FF N Y N Y
pdb2vt4/s1421543 (chain A)	-	P32: 4-{[(2S)-3-(t	100	93.08	95	WT DV VT F T YA SS SF W FF N F N Y
pdb2vt4/s1421560 (chain D)	-	P32: 4-{[(2S)-3-(t	100	91.69	95	WT DV VT F T YA SS SF W FF N F N Y
pdb2vt4/s1421562 (chain A)	-	Predicted Site	64	101.26	95	WT DV VT F T YA SS SF W FF N F N Y
pdb2vt4/s1421566 (chain D)	-	Predicted Site	65	99.89	95	WT DV VT F T YA SS SF W FF N F N Y
pdb2z73/s1406997 (chain B)	RHO	RET: RETINAL	100	61.13	14	YG GG GF f y ni MF gF W YA A a V K
pdb2z73/s1406994 (chain A)	RHO	RET: RETINAL	100	61.76	14	YG GG GF f y ni MF gF W YA A a V K
pdb2z73/s1408905 (chain B)	RHO	Predicted Site	64	77.09	14	YG GG GF f y nI MF GF W YA a a V K
pdb2z73/s1408902 (chain A)	RHO	Predicted Site	77	70.81	14	YG GG GF f y ni MF GF W YA a a V K
pdb2ziy/s1406739 (chain A)	RHO	RET: RETINAL	100	62.56	14	YG GG GF f y ni MF GF W Ya a a V K
pdb3eml/s1491370 (chain A)	-	ZMA: 4-{2-[(7-ami	100	49.29	14	ia VL Tq f p mv nf cv W LH N M I h
pdb2cbj/s824988 (chain B)	NAGJ	Predicted Site	71	-	-	
pdb2cbj/s824984 (chain A)	NAGJ	Predicted Site	92	-	-	
pdb2cbj/s824980 (chains A, B)	NAGJ	OAN: O-(2-ACETA	100	54.72	19	W- NV VK -S D V
pdb2cbj/s824983 (chains A, B)	NAGJ	OAN: O-(2-ACETA	100	53.44	19	W- NV VK -S D V
pdb2qk8/s1319712 (chain A)	-	MTX: METHOTRE	100	53.66	14	EL VK L M -F N T
pdb3e0b/s1504298 (chain B)	-	N22: 5-[3-(2,5-di	100	45.21	14	EL VK L M -F N
pdb3e0b/s1504295 (chain A)	-	N22: 5-[3-(2,5-di	100	43.71	14	L- EL V- L M -F N
pdb3e0b/s1504297 (chain B)	-	NAP: NADP NICO	100	-	-	
pdb3e0b/s1504296 (chain A)	-	NAP: NADP NICO	100	-	-	
pdb3e0b/s1504300 (chain B)	-	Predicted Site	70	-	-	
pdb3e0b/s1504299 (chain A)	-	Predicted Site	66	-	-	
pdb2qk8/s1319713 (chain A)	-	Predicted Site	76	-	-	
pdb1ith/s416096 (chain B)	HBF1	HEM: PROTOPOR	100	45.54	14	-Q-V-LF-Y-LFKH-IM
pdb1ith/s416099 (chain B)	HBF1	Predicted Site	77	-	-	
pdb1ith/s416098 (chain A)	HBF1	Predicted Site	61	44.86	14	-Q-V-LF-Y-LFKHM
pdb1ith/s416094 (chain A)	HBF1	HEM: PROTOPOR	100	43.93	14	-Q-V-LF-V-LFKHM
pdb1lht/s1143974 (chain A)	мв	HEM: PROTOPOR	100	47.88	14	-H -V -L F T -Y IL L H- I
pdb1lhs/s1143884 (chain A)	мв	HEM: PROTOPOR	100	47.69	14	-H -V -L F T -Y IL H- I
pdb1lhs/s1143885 (chain A)	мв	Predicted Site	94	46.66	14	-H -V -L F T -Y IL H- I
pdb1lht/s1143976 (chain A)	МВ	Predicted Site	91	-	-	
pdb2nrm/s1298120 (chain A)	MB	Predicted Site	65	-	-	
pdb2nrm/s1298115 (chain A)	MB	HEM: PROTOPOR	100	46.88	14	V-LFTIFLH
pdb1qkn/s484704 (chain A)	ESR2	RAL: RALOXIFENE	100	41.73	14	L AT F I -H -L W M- G У

CAU (2RH1), P32 (2VT4), and TIM (3D4S)

Example beta1-adrenergic blocker and CAU similar

396707

Potent and selective poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 inhibitor (IC50 = 20 and 6 nM, respectively) that demonstrated chemosensitizing properties at a concentration of 1 mcM when combined with temozolomid

2VT4: TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND CYANOPINDOLOL

396707_P32_20

LigandCross result for siteEID:2RH1-siteEID: 1276810

Sequences Chains	Sites	Binding Mode	IS .		
		Description	1		Binding Modes
Site Name		Locus	Description	Contact 🐟	Non-polar Polar H-bond Polar/H-bond
pdb2rh1/s1276810 (chain :	A)	-	CAU: (2S)-1-(9H-Carba	-	.WT.DV.VT.F.T.YA.SS.SF.W.FF.N.Y.N.Y
pdb2rh1/s1276810_7 (cha	iin A)	-	450766_396707_3	0.79	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_286 (c	hain A)	-	450766_396707_3	0.79	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_1 (cha	iin A)	-	450766_396707_3	0.79	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_280 (c	hain A)	-	450766_396707_3	0.79	WT DV VT F T YA SS SF W FF N Y N Y
pdb2vt4/s1421543 (chain A	4)	-	P32: 4-{[(2S)-3-(tert-bu	0.77	WT DV VT F T YA SS S-W FF N F N Y
pdb2vt4/s1421560 (chain [D)	-	P32: 4-{[(2S)-3-(tert-bu	0.77	WT DV VT F T YA SS S- W FF N F N Y
pdb2rh1/s1276810_13 (ch	iain A)	-	396707_257094_15	0.74	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_292 (c	hain A)	-	396707_257094_15	0.74	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_67 (ch	iain A)	-	414953_ZMA_1	0.73	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_346 (c	hain A)	-	414953_ZMA_1	0.73	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_18 (ch	iain A)	-	263341_257094_35	0.73	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_31 (ch	iain A)	-	414953_ZMA_1	0.73	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_297 (c	hain A)	-	263341_257094_35	0.73	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_310 (c	hain A)	-	414953_ZMA_1	0.73	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_17 (ch	iain A)	-	414953_ZMA_1	0.72	WT DY VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_296 (c	hain A)	-	414953_ZMA_1	0.72	WT DY VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_107 (c	hain A)	-	263341_257094_35	0.71	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_386 (c	hain A)	-	263341_257094_35	0.71	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_42 (ch	iain A)	-	263341_257094_35	0.71	WT DY VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_321 (c	hain A)	-	263341_257094_35	0.71	WT DY VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_3 (cha	iin A)	-	450766_396707_3	0.70	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_24 (ch	iain A)	-	450766_396707_3	0.70	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_282 (c	hain A)	-	450766_396707_3	0.70	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_303 (c	hain A)	-	450766_396707_3	0.70	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_19 (ch	iain A)	-	396707_257094_15	0.70	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_27 (ch	iain A)	-	396707_257094_15	0.70	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_29 (ch	iain A)	-	396707_257094_15	0.70	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_298 (c	:hain A)	-	396707_257094_15	0.70	WT DV VT E T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_306 (c	:hain A)	-	396707_257094_15	0.70	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_308 (c	hain A)	-	396707_257094_15	0.70	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_164 (c	:hain A)	-	226668_164327_7	0.69	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_211 (c	hain A)	-	263881_414953_2	0.69	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_443 (c	hain A)	-	226668_164327_7	0.69	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_490 (c	:hain A)	-	263881_414953_2	0.69	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_138 (c	:hain A)	-	239356_387297_42	0.68	WT DV VT F T YA SS SF W FF N Y N Y
pdb2rh1/s1276810_417 (c	hain A)	-	239356_387297_42	0.68	WT DV VT F T YA SS SF W FF N Y N Y
pdb3d4s/s1420907 (chain	A)	-	TIM: (2S)-1-(tert-butyla	0.67	WT DY VT F T YA SS SF W FF N Y N Y

Example Docked LigandCross Result (siteEID: 1276810)

Site Name	Locus	Ligand	%Conf	Sequence Positions
pdb2rh11/s1276810 (chain A)	-	CAU	100	. 100 . 10
pdb2rh1/s1276810_6 (chain A)	_	396707_P32_20	100	.WT.DV.VT.F.T.VA.SS.SF.W.FF.M.T.N.Y

Add'l slides

Nature Exploits Site Similarity...

Pregnane X-receptor – PXR ("sensor)" →CYP3A4 ("executioner") <u>PXR Binds > 50% drugs</u> Including some bile acids, statins, herbal components, a selection of HIV protease inhibitors, calcium channel modulators, numerous steroids, plasticizers and monomers, organochlorine pesticides, a peroxisome proliferator-activated receptorãantagonist, xenobiotics and endobiotics...

Site Similarity Coloring

Highly Similar Receptor regions

Dissimilar Receptor regions

Multi-Kinase Inhibitors

Nature Reviews | Drug Discovery Vol 8 | February, 2009

Drug (company)	Target	Highest phase	Indication*
Sorafenib (Bayer and Onyx)	PDGFR, VEGFR2 and 3, FLT3, KIT, RET, RAF	Launched	Hepatocellular carcinoma, RCC, renal tumour
Dasatinib (BMS)	BCR–ABL, FYN, SRC, LCK, EPH	Launched	ALL, CML
Nilotinib (Novartis)	PDGFR , ABL, KIT	Launched	CML
Sunitinib (Pfizer)	PDGFR, VEGF2, FLT3, KIT	Launched	Gastrointestinal tumour, RCC
Motesanib (Amgen and Takeda)	PDGFR, VEGFR, KIT	Phase III	NSCLC
Vandetanib (AstraZeneca)	EGFR, VEGFR2, RET	Phase III	Thyroid tumour, NSCLC
Lestaurtinib (Cephalon)	JAK2, FLT3, TRKA	Phase III	Myeloid leukaemia
XL184 (BMS and Exelixis)	VEGFR2, MET, KIT, FLT3, RET, TEK	Phase III	Thyroid tumour
Pazopanib (GSK)	PDGFR, VEGFR1, 2 and 3, KIT	Phase III	Renal tumour, sarcoma

$\label{eq:table_1} Table \ 1 \ | \ \textbf{Selected multi-target kinase inhibitors}$

*Indication given for highest phase; all drugs are also in lower phase clinical trials for other oncology indications. ALL, acute lymphoblastic leukaemia; BMS, Bristol–Myers Squibb; CML, chronic myeloid leukaemia; EGFR, epidermal growth factor receptor; GSK, GlaxoSmithKline; NSCLC, non-small-cell lung cancer; PDGFR, platelet-derived growth factor receptor; RCC, renal cell carcinoma; VEGFR, vascular endothelial growth factor receptor.

Imatinib (Gleevec: Novartis)	ABL, PDGFR, KIT	CML, GIST
Gefitinib (Iressa: Astra Zeneca)	EGFR, (ERBB4,GAK,)	NSCLC

Rationalizing Drug Discovery

From: Individual biological target \rightarrow "Selective" compounds

To: Target combinations \rightarrow Multi-target compound (combinations)

Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

~ 5800 journal articles/patents

• KKB Content Summary (Q2-2009):

of kinase targets: ~400
of SAR Data points: ~415,000
of unique kinase molecules with SAR data: ~150,000
of annotated assay protocols: ~19,000
of annotated chemical reactions: ~2,300
of unique kinase inhibitors: ~495,000 (~340K enumerated from patent chemistries)

KKB Growth Rate:

- Average **15-20K** SAR data points added per quarter
- Average 20-30K unique structures added per quarter

Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

Kinase Validation Set

Three sizable datasets freely available to the research community

http://www.eidogen-sertanty.com/kinasednld.php

About Eidogen-Sertanty

- Knowledge-Driven Solutions Provider
 - Sertanty established in 2003, acquired Libraria assets
 - Sertanty acquired Eidogen/Bionomix in 2005→ Eidogen-Sertanty
 - \$20M invested: Libraria (\$6M), Eidogen/Bionomix (\$12M), Sertanty/ES (\$2M)
 - 14 distributed FTE's (4 US and 10 India)
 - Worldwide (bio)pharmaceutical customer base
 - Cash-positive since 2006
- Databases & Software Annual Subscriptions
 - *TIPTM* Protein Structural Informatics Platform
 - *KKBTM* Kinase SAR and Chemistry Knowledgebase
 - CHIP[™] Chemical Intelligence Platform
- DirectDesign[™] Fee-For-Service
 - In Silico Target Screening ("Target Fishing" and Repurposing)
 - Target and compound prioritization services
 - Fast Follower Design: Novel, Patentable Leads

TIP/Kinase – 2009 Promotional Bundle

TIP/Workgroup technology

- Behind-the-firewall with web interface and commandline utilities
- > TIP database creation, administration, and update capabilities
- Optionally available module: TIP/Webservices

TIP Kinase Family Database

- > Over 1300 sequences (~500 human) modeled w/multiple templates
- Over 4000 models derived from over 1200 PDB templates
- Over 7M structure and over 15M siteSimilarities
- Over 620 co-complexed ligands

One-year subscription to Kinase Knowledgebase (KKB exports)

> Over 402,000 SAR datapoints from over 5,500 articles/patents

TIP/Kinase Content

Reference: Interrogating the druggable genome with structural informatics, MolecularDiversity (2006)

TIP Content and Algorithm Engine

• Interrogating the druggable genome with structural informatics MolecularDiversity (2006)

• STRUCTFAST: Protein Sequence Remote Homology Detection and Alignment Using Novel Dynamic Programming and Profile-Profile Scoring Proteins. 2006 64:960-967

• StructSorter: A Method for Continuously Updating a Comprehensive Protein Structure Alignment Database J. Chem. Inf. Model. 2006, 46, 1871-1876

• Convergent Island Statistics: A fast method for determining local alignment score significance. Bioinformatics, 2005, 21, 2827-2831.

Kinome Viewer - KKB and TIP

Data Integration

: Kinase Knowledgebase

Application Integration

: Target Informatics Platform

Saccelrys' Kinome Viewer with the Kinase Knowledgebase (KKB) Sertanty

Protocols available for KV-KKB (kkbq109 - 10% sample)

KKB-Search by Chemical Structure

Kinase Knowledgebase (kkbq109 - 10% sample) Results Displayed in Accelrys Kinome Viewer

Kinome Viewer (KV): Data and Application Integration

Kinome Viewer with the Kinase Knowledgebase (KKB) Sertanty

TIP Access: One-Click Away

Sequence 158401

Add To Project Protein Search

"FLT4 kinase catalytic domain (Aliases: PCL, VEGFR3)"

Sequence Headers								
Accession	Locus	Database	Enzyme Family	Species				
TK_VEGFR_FLT4	FLT4_Hsap	kinbase		Homo sapiens				

Chains									
Source	Start	Stop	Identifier	Knowledge Level	#Sites	Primary Template			
STRUCTFAST	1	325	182419	3	2	1 ywnA 62%			
STRUCTFAST	1	325	198501	3	2	1oecA 44%			
STRUCTFAST	1	325	238701	3	1	1t46A 47%			
STRUCTFAST	1	325	296001	3	2	1fgiA 43%			
STRUCTFAST	1	325	429801	3	3	1ir3A 32%			
STRUCTFAST	1	325	504101	3	3	2i1mA 45%			

Sequence Domains							
Pfam ID	Description	Start	Stop				

Amino Acid Sequence													
1	LHLGR	VLGYG	AFGKV	VEASA	FGIHK	GSSCD	TVAVK	MLKEG	ATASE	HRALM	SELKI	LIHIG	60
61	NHLNV	VNLLG	ACTKP	QGPLM	VIVEF	CKYGN	LSNFL	RAKRD	AFSPC	AEKSP	EQRGR	FRAMV	120
121	ELARL	DRRRP	GSSDR	VLFAR	FSKTE	GGARR	ASPDQ	EAEDL	WLSPL	TMEDL	VCYSF	QVARG	180
181	MEFLA	SRKCI	HRDLA	ARNIL	LSESD	VVKIC	DFGLA	RDIYK	DPDYV	RKGSA	RLPLK	WMAPE	240
241	SIFDK	VYTTQ	SDVWS	FGVLL	WEIFS	LGASP	YPGVQ	INEEF	CQRLR	DGTRM	RAPEL	ATPAI	300
301	RRIML	NCWSG	DPKAR	PAFSE	LVEIL								325

Extracting Kinase Data Sets

- Only enzymatic (homogeneous) assays with defined target
- Only high quality data (IC50, Ki, Kd)
- Standardizing chemical structures (salt forms, stereochemistry, E/Z geometry, tautomers, ionization)
- Kinase target Entrez Gene names and SwissProt accessions
- Aggregate data by structure first in an individual experiment and then globally by unique kinase and structure
- > 189,119 unique (structure target) data points (366 kinases)
- > 93,121 unique structures

Relating Kinase Targets by Compound Activity

 "ACTivity similarity" for compounds tested in common which are active for one (or both) target(s)

$$ACTsim_{ij} = 1 - \frac{1}{N} \sum_{k=1}^{N>2} \frac{\left| pIC50_{ki} - pIC50_{kj} \right|}{\max pIC50_{diff}}$$

Vieth et.al. "Kinomics" Biochim Biophys Acta 2004 243

- Activity cutoff pVal ≥ 6.5; minimum 20 actives per kinase pair
- Compute Minimum spanning tree (Kruskal)
 - Visualization as network tree (Cytoscape)

Side note: "Activity fingerprint" (for a comprehensive activity matrix) Bamborough et.al. J Med Chem **2008**, 7898

Relating Kinase Targets by SARsim 'Features'

- Laplacien-modified Naïve Bayesian models using FCFP_4 fingerprints
 - Measure contribution of a bit in a fingerprint for a specific outcome
 - Assume all variables are independent
 - A compound is scored by summing the weights of its fingerprint bits
- Kinase models compared by the Pearson correlation coefficient of the vector of the probabilistic weights (log of Avidon weights) of all fingerprint bits

Adopted from Schuffenhauer Org Biomol Chem 2004 3256

- Activity cutoff pIC50 > 6.5; all other compounds negative
- Select models with ROC > 0.8 and minimum 20 actives
- Compute the correlation matrix

Kinase Target Similarity by ACTsim/SARsim

