# Using knowledgebases of structure-activity-data, receptor-site and protein structural similarity to generate new matter ideas 

Steven Muskal, Ph.D.
Chief Executive Officer
Eidogen-Sertanty, Inc.
smuskal@eidogen-sertanty.com


## Protein Structure Growth Continues

> ~ 60K Structures/co-complexes (July-2009)
> $>600$ deposits per month $\rightarrow>150 /$ week!

## PDB Growth

source: rcsb.org


## Drugs Developed using Structural Knowledge

| Inhibitor/Drug | Disease | Company(s) | Protein targeted | Enzyme Family |
| :---: | :---: | :---: | :---: | :---: |
| STI-571/Gleevec | Chronic Myeloid Leukemia | Novartis | c-Abl kinase | Tyrosine kinase |
| Fluoroquinolone/Ciprofloxacin | Bacterial infection | Bayer | Gyrase | ATP Hydrolase |
| Saquinavir/Invirase, Ritonavir/Norvir, Indinavir/ Crixivan, Nelfinavir/Viracept, <br> Amprenavir/Agenerase, Fosamprenavir/Lexiva, | AIDS | Roche, Abbott, Agouron, Merck, Vertex | HIV-1 Protease | Aspartylprotease |
| Trusopt | Glaucoma | Merck | Carbonic Anhydrase | Lyase |
| Thymitaq | Cancer | Agouron | Thymidylate synthase | Methyl transferase |
| Celecoxib/Celebrex, Rofecoxib/Vioxx | Inflammation, rheumatoid arthritis | Searle, Merck | Cox-2 | Oxidoreductase |
| AG3340/Prinomastat | Cancer | Agouron | Matrix metalloprotease | Metalloprotease |
| Oseltamivir phosphate/Tamiflu, Zanamivir/Relenza | Influenza | Roche | Neuraminidase | Glycosidase |

## TIP Content and Algorithm Engine



- Interrogating the druggable genome with structural informatics MolecularDiversity (2006)
- STRUCTFAST: Protein Sequence Remote Homology Detection and Alignment Using Novel Dynamic Programming and Profile-Profile Scoring Proteins. 2006 64:960-967
- StructSorter: A Method for Continuously Updating a Comprehensive Protein Structure Alignment Database J. Chem. Inf. Model. 2006, 46, 1871-1876
-Convergent Island Statistics: A fast method for determining local alignment score significance. Bioinformatics, 2005, 21, 2827-2831.Eidogen-Sert 1 anty


## Kinase SAR Knowledgebase (KKB) - Hot Targets

Kinase Targets of Clinical Interest
from Vieth et al. Drug Disc. Today 10, 839 (2005).


Eidogen-Sertanty KKB SAR Data Point Distribution

> 415,000 SAR data points curated from > 5800 journal articles and patents

## Kinase SAR Naïve Bayse Models



## Tools for Patent Intelligence

Define query conditions for patents
Assay Target:
GSK3B

Select Patent Assignee:
Thouin, Eryk
VERTEX PHARMACEUTICALS INC.
VERTEX PHARMACEUTICALS INCORPORATED
Vertex Pharmaceutical Incorporated
Vertex Pharmaceuticals Incorporated
YUYU Inc
and optionally filter by substructure:


Search

## Tools for Patent Intelligence

15 Patent(s) for the queried conditions:
Assay target = GSK3B and Patent assignee in (VERTEX PHARMACEUTICALS INC. , VERTEX PHARMACEUTICALS INCORPORATED, Vertex Pharmaceutical Incorporated , Vertex Pharmaceuticals Incorporated )


## Tools for Patent Intelligence



Select among one of the detected common scaffolds for these representative compounds or enter your own scaffold query for SAR analysis:

$60 \%$ of representative




## Tools for Patent Intelligence

SAR Table for core in patents
223 compounds in patent with this scaffold series structure


## Accelrys Kinome Viewer with Eidogen-Sertanty KKB

## 



## Science

 protein sequences of these catalytic domains. Each kinase is at the tip of a branch, and
the similarity between yarious kinases is inversely related to the distanc
the similarity between various kinases is inversely related to the distance
between their positions on the tree diagram. Most kinases fall into
between their positions on the tree diagram. Moss kina
small families of highly related sequences, and most
 families are part of larger groups. The seven major groups are labeled and colored distinctly,
Other kinases are shown in the center of the tree, colored gray. The relationships shown on the Other kinases are shown in the center of the tree, colored gray. The relationships shown on the
tree can be used to predict protein substrates and biological function for many of the over 100 uncharacterized kinases presented here.
The inset d diagram shows trees for seven atypical protein kinase families. These proteins
stke


SIGNAL TRANSDUCTION
KNOWLLEDEE ENVIRONMENT members of the protein kinase superfamily. A further eight atypical protein kinases in small
families of one or two genes are not shown.


 | Kinase names |
| :---: |
| Aseancurestinn |

















产 Cell Signaling

| ATYPI CAL PROTEIN KINASES |  |
| :---: | :---: |
|  |  |
| Alpha |  |
| РDНк | ${ }^{\text {Brd4 }}$ <br> PDHKK <br> PDHK1 |
| РІКК |  |
|  |  |

## тнн Human Kinome

## TKL



## Kinase Domain Sequence Similarities - MST



## Local site similarity - MST



## Example: PhysChem SiteSim vs. Domain Seq ID

- STE_STE20_HGK (MAP4K4): template 1u5rA
- TK_Musk_MUSK (MUSK) : template 1ir3A
- Full Sequence identity: 0.22 Site Sequence identity: 0.55
- Normalized (physicochemical) site similarity: 0.84


## MAP4K4



MUSK


MAP4K4 MUSK
.VGNGTY.V.A.K.M.E. A. MEFC. AGS. D. . D. QN. L.

## MAP4K4 and MUSK Small Molecule Inhibitors

| $10$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | $12 x^{2}$ |  |
|  |  |  |  |

Eidogen-Sert(a)nty

## LigandCross: Shuffling Ligand Functionality

Similar to Vertex's BREED: J. Med. Chem. 47, 2768 (2004)





N5B
-) EidogenSert(a)nty

## LigandCross Workflow



New Molecules via LigandCross

EidogenSert $\widehat{a}$ nty


1) Issue TIP/LigandSearch
2) Issue TIP/SiteSimSearch
3) Issue LigandCross
4) Filter and locate results in KKB
5) Dock and visualize results


DS-LibDock Results


Eidogen-Sert (a)nty

## Step 1: Find Co-complexes and Sites from Ligand-Structure-Search



## Step 2: Find Other Receptor Sites from Site-Similarity Search



## Step 3: LigandCross - Mixing Ligand Features from Aligned Sites



## Example LigandCross Results

| ory | $x 0^{2}$ |  | $2$ |  |
| :---: | :---: | :---: | :---: | :---: |
| sime |  | $5^{2}$ |  | $5_{5}^{5}$ |
| $0$ |  |  |  |  |
|  | ing |  |  | $\}_{\substack{2 \\ z_{2} \\ j}}$ |

## Step 4: LigandCross Ligands with Reported Biological Activity

Kinase Knowledgebase (pIC50)
Bayesian Model Predictions (PP)


> Issue TIP/LigandSearch
> Identify/Dock "AddedDiversity"
> Issue TIP/SiteSimSearch
> LigandCross w/AddedDiversity
> Filter and locate results in KKB
> Dock and visualize results


1) EidogenSert(a) nty

## Example Potent Kinase Inhibitors ("Added Diversity")

|  <br> 4336533 LCK pval: 11.00 |  <br> 4302493 CDK9 pval: 10.54 |  <br> 4332561 KDR pval: 10.52 |  <br> 4318145 PKG pval: 10.40 | Chiral <br> 4336686 PKA pval: 10.00 |  <br> 4272835 ABL1 pval: 10.00 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  <br> 894611 CDK2 pval: 9.70 |  <br> 4358565 PRKCQ pval: 9.70 |  <br> 4363734 RAF1 pval: 9.30 |  <br> 4369892 EPHB4 pval: 9.24 |  <br> 809 CDK4 pval: 9.15 |  <br> 4374385 PDGFRA, pval: 9.14 |
|  <br> 4366691 PLK1 pval: 9.10 |   <br> 4301886 BCR ABL pval: 9.08 |  <br> 4307551 TEK pval: 9.00 | Chiral <br> 4363016 MAPKK11 pval: 8.82 |  <br> 4343448 ROCK1 pval: 8.74 |  <br> 4363247 MAPKA.PK2 pval: 8.70 |
|  <br> 4291996 \|kB pval: 8.70 |  <br> 4208857 FAK2 pval: 8.22 | Chira <br> 4373725 PTK2日 pval: 8.22 | Chiral <br> 1788 ZAP70 pval: 8.10 |  <br> 2425813 PTPN9 pval: 5.96 |  <br> 4303129 MAP3KK2 pval: 4.70 |

## Potent Kinase Inhibitors Docked (s1309707)



## LigandCross Examples using "Added Diversity"

|  <br> 434344880927 |  <br> 4272835_2425813_23 |  <br> 436373442919962 |
| :---: | :---: | :---: |
|  4208857_4208857_1 |  |  242_A96_5 |
|  <br> 242_MLH_1 |  <br> 242_MUH_2 |  |

```
4343448_809_27:
CDK4: 6.80 CDK2: 5.63 CDK2: 6.12 CDC2: 5.58 CSK: 5.99 CDK5: 6.81
CDK4: 6.80 CDK2: 5.63 CDK2: 6.12 CDC2: 5.58 CDK4: 6.80
4272835_2425813_23:
PTPN1: 4.24 PTPRA: 4.21
4363734_4291996_2:
RAF1: 9.00 MAPK1: 5.29 BRAF: 8.05 BRAF: }8.5
4208857_4208857_1:
FAK2: 8.22 KDR: 5.86 PDGFRB: 4.90 EGFR: 4.17 ERBB2: 5.23
900_STI_1:
PDGFR: 8.00 PDGFR: 8.00 ABL: 6.10 PDGFRB: 8.00 PDGFR: 8.00
ABL: 6.10
242_A96_5:
LCK: }9.4
242_MUH_1:
LCK: 9.40 TEK: 7.68 KDR: 8.22 MAPK14: 9.00 JAK3: 6.81
242_MUH_2:
KDR: 8.40 TEK: 8.40 TEK: 8.40 KDR: 8.40 TEK: 8.40 KDR: 8.40
406_STI_1:
BCR_ABL: 8.40 BCR_ABL: 5.30 LYN: 8.06 ABL1: 8.07 ABL1: 8.40
```

EidogenSert(a)nty

## Ligand Functionality Shuffling across the Kinome

63 Kinases as starting points

## Generates novel compounds

- From 280 Unique Kinase co-Crystal ligands
- > 14,000 new unique structures are generated (HTS filter)

Maximum similarity against pdb ligand input (ECFP4)


## Drug- / lead-like novel compounds

- Strict filtering (drug-/ lead-like; functional groups, properties)
$>2,153$ unique compounds ( 64 pdb ligands pass the same filters)



## Novel active compounds

- 380 reported kinase inhibitors are generated
- 268 are novel (not seen as input into the protocol)

Maximum similarity against pdb ligand input (ECFP4)


## Conclusions

- Significant receptor-site similarities exist within and across target families
- The structurally resolved and modelable proteome is a very rich source for new matter ideas
- LigandCross can be an effective approach to generating novel, bioactive matter using co-complexes, known inhibitors, and/or fragment-based information.


## Acknowledgements

- University of Miami
> Stephan Schurer / Dusica Vidovic
- CNIO-Spain
> Julen Oyarzabal/Obdulia Rabal
- Accelrys
> Mori Masayuki
> Shikha Varma / Ton van Daelen
> Kush Kapila / Guillaume Paillard


BollenJ (March 2009) -ClickstreamData Yields High-Resolution Maps of Science
> June Snedecor

## LigandCross CAU/siteSimilar Ligands w/Docked BioActives

- Extract CAU/2RH1 Site (siteEID: 1276810) from TIP
- Issue siteSimilarity Search against siteEID: 1276810
- LibDock 20-30 Bioactive Molecules (betal-adrenergic active+ CAU similar)
- LigandCross CAU and siteSimilar Ligands w/Docked BioActives


## TIP／SiteSimilarity Search－siteEID： 1276810 （CAU／2RH1）



Query：2rh1A／s1276810
Total Sites Found： 399

| Same－Fold Sites： | 358 | $(89.7 \%)$ |
| ---: | :--- | :--- |
| Dissimilar－Fold Sites： 41 | $(10.3 \%)$ |  |
| Ligands： | Predicted | 354 |
|  | MGD | 15 |
| NAD | 11 | $(38.7 \%)$ |
| ATP | 4 | $(2.8 \%)$ |
| Other | 15 | $(1.0 \%)$ |
|  |  | $(3.8 \%)$ |


| Index | Superfamily Clusters | Family Clusters | Site Clusters | Sites | Description | Ligand Information | SiteSorter Range | \％ID Range | Contact Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 》 | 3 | 298 | 358 | Beta－1 adrenergic receptor | Predicted：350，P32：4，RET：3，TIM： 1 | 60－107 | 14－100 | 0．00－0．77 |
| 2. | 》 | 1 | 2 | 15 | PERIPLASMIC NITRATE REDUCTASE | MGD： 15 | 60－66 | 14－14 | 0．05－0．09 |
| 3. | \＄ | 1 | 2 | 4 | PYRUVATE KINASE | ATP： 4 | 61－66 | 14－14 | 0．10－0．12 |
| 4. | \＄ | 1 | 2 | 2 | 4S－LIMONENE SYNTHASE | F3P：1，FPG： 1 | 61－65 | 14－14 | 0．12－0．14 |
| 5. | \＄ | 1 | 11 | 11 | PROTEIN（S－ADENOSYLHOMOCYSTEINE | NAD： 11 | 61－64 | 14－14 | 0．05－0．06 |
| 6. | $\geqslant$ | 1 | 1 | 2 | BIOTIN BIOSYNTHESIS CYTOCHROME P4： | Predicted： 2 | 63－64 | 14－14 | 0．00－0．00 |
| 7. | 》 | 1 | 3 | 3 | ALPHA－2，3／2，6－SIALYLTRANSFERASE／SIA | CSF： 3 | 60－63 | 14－19 | 0．09－0．12 |
| 8. | 》 | 1 | 1 | 2 | ARSENITE OXIDASE | Predicted： 2 | 61－62 | 14－14 | 0．00－0．00 |
| 9. | \＄ | 1 | 1 | 1 | ASPARTATE AMINOTRANSFERASE | 1ahgC： 1 | 62－62 | 14－14 | 0．06－0．06 |
| 10. | $\otimes$ | 1 | 1 | 1 | ACYL－COA OXIDASE | FAD： 1 | 60－60 | 14－14 | 0．06－0．06 |

EidogenSertanty

| Sequences | Chains Sit | Binding Modes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  |  |  |  |  |  | Site Residue Conservation |
| Site Name |  | Locus | Description | \%Conf | SiteSorter > | \% ID | $\square$ Non-polar $\square$ Polar $\square \mathrm{H}$-bond $\square$ Polar/H-bond |
| pdb2rh1/s1276810 (chain A) |  | - | CAU: (2S)-1-(9H-... | 100 | - | - | .WT.DV.VT.F.T.YA.SS.SF.W.FF.N.Y.N.Y |
| pdb2vt4/s1421547 (chain B) |  | - | P32: 4-f(2S)-3-(t... | 100 | 93.03 | 95 | WT DV VT F T YA SS Sf WFen F N Y |
| pdb2vt4/s1421552 (chain C) |  | - | P32: 4-d(2)-3-(t... | 100 | 93.81 | 95 | WT DV VT F T YA SS Sf Wran F N Y |
| pdb2vt4/s1421564 (chain C) |  | - | Predicted Site | 78 | 104.37 | 95 | WT DV VT F T YA SS SF W FF N F N Y |
| pdb3d4s/s1420913 (chain A) |  | - | Predicted Site | 64 | 102.08 | 100 | WT DV VT F $t$ YA SS SF W FF N y N Y |
| pdb3d4s/s1420907 (chain A) |  | - | TIM: (2S)-1-(tert-... | 100 | 97.93 | 100 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb2vt4/s1421543 (chain A) |  | - | P32: 4-d(2S)-3-(t... | 100 | 93.08 | 95 | WT DV VT F T YA SS Sf Wren F N Y |
| pdb2vt4/s1421560 (chain D) |  | - | P32: 4-f(2) -3-(t... | 100 | 91.69 | 95 | WT DV VT F T YA SS Sf WFen F N Y |
| pdb2vt4/s1421562 (chain A) |  | - | Predicted Site | 64 | 101.26 | 95 | WT DV VT F T YA SS Sf W Fr N F N Y |
| pdb2vt4/s1421566 (chain D) |  | - | Predicted Site | 65 | 99.89 | 95 | WT DV VT F T YA SS Sf Wran F N Y |
| pdb2z73/s1406997 (chain B) |  | RHO | RET: RETINAL | 100 | 61.13 | 14 | YG GG GF f y ni Mr gr w ya a a V K |
| pdb2z73/s1406994 (chain A) |  | RHO | RET: RETINAL | 100 | 61.76 | 14 | YG GG GF f y ni MF gF w ya a a V $K$ |
| pdb2z73/s1408905 (chain B) |  | RHO | Predicted Site | 64 | 77.09 | 14 | YG GG GF f y nI MF GF w y a a V K |
| pdb2z73/s1408902 (chain A) |  | RHO | Predicted Site | 77 | 70.81 | 14 | YG GG GF f y ni Mr GF w ya a a V K |
| pdb2ziv/s1406739 (chain A) |  | RHO | RET: RETINAL | 100 | 62.56 | 14 | YG GG GF f y ni Mr GF w ya a a V |
| pdb3emlis1491370 (chain A) |  | - | ZMA: 4-\{2-[(7-ami... | 100 | 49.29 | 14 | ia VL Tq f p mv nf cv W $\mathrm{LH} N \mathrm{Nm}$ I h |
| pdb2cbjis824988 (chain B) |  | NAGJ | Predicted Site | 71 | - | - |  |
| pdb2cbjis824984 (chain A) |  | NAGJ | Predicted Site | 92 | - | - |  |
| pdb2cbjis 824980 (chains $A_{,}, \mathrm{B}$ ) |  | NAGJ | OAN: O-(2-ACETA... | 100 | 54.72 | 19 | W- NV V- - - - - - - -- - D V |
| pdb2cbjis824983 (chains $A_{1}, \mathrm{~B}$ ) |  | NAGJ | OAN: O-(2-ACETA... | 100 | 53.44 | 19 | W- NV V- - - - - -- --- - D V |
| pdb2qk8/s1319712 (chain A) |  | - | MTX: METHOTRE... | 100 | 53.66 | 14 | -- EL VK L - -- -- -- M -F N - - T |
| pdb3e0bis1504298 (chain B) |  | - | N22: 5-[3-(2,5-di... | 100 | 45.21 | 14 | -- EL VK L - -- -- -- M -F N - - - |
| pdb3e0bis1504295 (chain A) |  | - | N22: 5-[3-(2,5-di... | 100 | 43.71 | 14 | L- EL V- L - -- -- -- M - ${ }^{\text {N }}$ - - - |
| pdb3e0b/s1504297 (chain B) |  | - | NAP: NADP NICO... | 100 | - | - |  |
| pdb3e0bis1 504296 (chain A) |  | - | NAP: NADP NICO... | 100 | - | - |  |
| pdb3e0bis1504300 (chain B) |  | - | Predicted Site | 70 | - | - |  |
| pdb3e0b/s1 504299 (chain A) |  | - | Predicted Site | 66 | - | - |  |
| pdb2qk8/s1319713 (chain A) |  | - | Predicted Site | 76 | - | - |  |
| pdb1 ithis 416096 (chain B) |  | HBF1 | HEM: PROTOPOR... | 100 | 45.54 | 14 | -Q -V -L F - Y- LF -- K H- I M - - |
| pdb1 ithis416099 (chain B) |  | HBF1 | Predicted Site | 77 | - | - |  |
| pdb1 ithis 416098 (chain A) |  | HBF1 | Predicted Site | 61 | 44.86 | 14 | -Q -V -L F - Y- LF -- K H- - M - - |
| pdb1 ithis 416094 (chain A) |  | HBF1 | HEM: PROTOPOR... | 100 | 43.93 | 14 | -Q -V -L F - Y- LF -- K H- - M - |
| pdb1 1htis1143974 (chain A) |  | MB | HEM: PROTOPOR... | 100 | 47.88 | 14 | -H -V -L F T -Y IL -- L H- I - - |
| pdb1 lhsis1143884 (chain A) |  | MB | HEM: PROTOPOR... | 100 | 47.69 | 14 | -H -V -L F T -Y IL -- - H- I - - |
| pdb1 1hsis1143885 (chain A) |  | MB | Predicted Site | 94 | 46.66 | 14 | -H -V -L F T -Y IL -- - H- I - - |
| pdb1 lint's1143976 (chain A) |  | MB | Predicted Site | 91 | - | - |  |
| pdb2nrmis1298120 (chain A) |  | MB | Predicted Site | 65 | - | - |  |
| pdb2nrmis1298115 (chain A) |  | MB | HEM: PROTOPOR... | 100 | 46.88 | 14 | -- -V -L F T -- IF -- L H- - - - |
| pdb1 qknis 484704 (chain A) |  | ESR2 | RAL: RALOXIFENE | 100 | 41.73 | 14 | -- -L AT F I -H -L -- W M- G-- - |

## CAU (2RH1), P32 (2VT4), and TIM (3D4S)



CAU (2RH1)


TIM (3D4S)

## Example beta1-adrenergic blocker and CAU similar




| LigandCross Diverse Examples |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Groups |  |  |  |  |
| NumQueries: 1 |  |  |  |  |
|  |  |  |  |  |
|  <br> 328954_CAU_7 LC: 0.500 DL: 15.74 |  <br> 239356_RET_7 LC: 0.511 DL: 14.83 |  |  |  <br> 156471_TMM_4 LC: 0.452 DL: 14.33 |
|  <br> 226668_TMM_3 LC: 0.400 DL: 15.82 |  <br> 239356 387297 42 LC: 0.619 DL: 10.22 |  |  <br> 414953 ZMA 1 LC: 0.568 DL: 10.66 |  <br> 414953 164327 1 LC: 0.568 DL: 10.45 |
|  |  |  |  |  <br> 263341 RAL_11 LC: 0.205 DL: 13.50 |



## 396707

Potent and selective poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 inhibitor (IC50 $=20$ and 6 nM . respectively) that demonstrated chemosensitizing properties at a concentration of 1 mcM when combined with temozolomid


P32 (2VT4)

2VT4: TURKEY BETA. ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND CYANOPINDOLOL


396707_P32_20

| Sequences | Chains Sites | Binding Modes |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  |  |  |  | Binding Modes |
| Site Name |  | Locus | Description | Contact $\wedge$ | $\square$ Non-polar $\square$ Polar $\square \mathrm{H}$-bond $\square$ Polar/ $/ \mathrm{H}$-bond |
| pdb2rh1/s1276810 (chain A) |  | - | CAU: (2S)-1-(9H-Carba... | - | .WT.DV.VT.F.T.YA.SS.SF.W.FF.N.Y.N.Y |
| pdb2rh1/s1276810_7 (chain A) |  | - | 450766_396707_3 | 0.79 | WT DV VTE T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_286 (chain A) |  |  | 450766_396707_3 | 0.79 | WT DV VTE T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_1 (chain A) |  | - | 450766_396707_3 | 0.79 | WT DV VTE T YA SS SF Wran y M |
| pdb2rh1/s1276810_280 (chain A) |  |  | 450766_396707_3 | 0.79 | WT DV VTE TYA SS SF W FF N Y N Y |
| pdb2vt4/s1421543 (chain A) |  | - | P32: 4-I(2S)-3-(tert-bu... | 0.77 | WT DV VT F T YA SS S- WFFNFNY |
| pdb2vt4/s1421560 (chain D) |  | - | P32: 4-d(2S)-3-(tert-bu... | 0.77 | WT DV VT F T YA SS S- W FF N F N Y |
| pdb2rh1/s1276810_13 (chain A) |  | - | 396707_257094_15 | 0.74 |  |
| pdb2rh1/s1276810_292 (chain A) - |  |  | 396707_257094_15 | 0.74 |  |
| pdb2rh1/s1276810_67 (chain A) |  | - | 414953_ZMA_1 | 0.73 | WT DV VT F T Y |
| pdb2rh1/s1276810_346 (chain A) |  | - | 414953_ZMA_1 | 0.73 | WT DV VT F T Y |
| pdb2rh1/s1276810_18 (chain A) |  | - | 263341_257094_35 | 0.73 | WT DV VIT F T Y |
| pdb2rh1/s1276810_31 (chain A) |  | - | 414953_ZMA_1 | 0.73 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_297 (chain A) - |  |  | 263341_257094_35 | 0.73 | WT DV VIE T Y |
| pdb2rh1/s1276810_310 (chain A) - |  |  | 414953_ZMA_1 | 0.73 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_17 (chain A) |  | - | 414953_ZMA_1 | 0.72 | WT DY VTF T Y |
| pdb2rh1/s1276810_296 (chain A) - |  | - | 414953_ZMA_1 | 0.72 | WT DY VT F T Y |
| pdb2rh1/s1276810_107 (chain A) - |  |  | 263341_257094_35 | 0.71 | WT DV VT F T Y |
| pdb2rh1/s1276810_386 (chain A) - |  |  | 263341_257094_35 | 0.71 | WT DV VT F T Y SS SF W FF N Y N Y |
| pdb2rh1/s1276810_42 (chain A) |  | - | 263341_257094_35 | 0.71 | WT DY VTE TYA SS SF W FFNY N Y |
| pdb2rh1/s1276810_321 (chain A) - |  | - | 263341_257094_35 | 0.71 | WT DY VTE TYA SS SF W FFNYNY |
| pdb2rh1/s1276810_3 (chain A) |  | - | 450766_396707_3 | 0.70 | WT DV VTE T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_24 (chain A) |  | - | 450766_396707_3 | 0.70 | WT DV VTE TYA SS SF W FFNYNY |
| pdb2rh1/s1276810_282 (chain A) - |  |  | 450766_396707_3 | 0.70 | WT DV VTE T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_303 (chain A) - |  |  | 450766_396707_3 | 0.70 | WT DV VTE TYı SS SF W FF N Y M Y |
| pdb2rh1/s1276810_19 (chain A) |  | - | 396707_257094_15 | 0.70 | WT DV VTE T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_27 (chain A) |  | - | 396707_257094_15 | 0.70 | WT DV VT F T y S S SF W FF N Y N Y |
| pdb2rh1/s1276810_29 (chain A) |  | - | 396707_257094_15 | 0.70 | WT DV VTE TYASS SF WFFNYNY |
| pdb2rh1/s1276810_298 (chain A) - |  |  | 396707_257094_15 | 0.70 | WT DV VTE T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_306 (chain A) - |  |  | 396707_257094_15 | 0.70 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_308 (chain A) - |  |  | 396707_257094_15 | 0.70 | WT DV VTE T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_164 (chain A) |  |  | 226668_164327_7 | 0.69 | WT DV VT F T Y |
| pdb2rh1/s1276810_211 (chain A) |  |  | 263881_414953_2 | 0.69 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_443 (chain A) |  |  | 226668_164327_7 | 0.69 | WT DV VT F T Y |
| pdb2rh1/s1276810_490 (chain A) |  |  | 263881_414953_2 | 0.69 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_138 (chain A) |  |  | 239356_387297_42 | 0.68 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb2rh1/s1276810_417 (chain A) |  |  | 239356_387297_42 | 0.68 | WT DV VT F T YA SS SF W FF N Y N Y |
| pdb3d4sis1420907 (chain A) |  |  | TIM: (2S)-1-(tert-butyla... | 0.67 | WT DY VT F T YA SS SF W FF N Y N Y |

## Example Docked LigandCross Result (siteEID: 1276810 )

CAU (2RH1-siteEID: 1276810)
396707_P32_20 (2RH1-siteEID: 1276810)

## Add'I slides

## Nature Exploits Site Similarity...



Pregnane X-receptor PXR ("sensor)" $\rightarrow$ CYP3A4 ("executioner")
PXR Binds > 50\% drugs Including some bile acids, statins, herbal components, a selection of HIV protease inhibitors, calcium channel modulators, numerous steroids, plasticizers and monomers, organochlorine pesticides, a peroxisome proliferator-activated receptorãantagonist, xenobiotics and endobiotics...

Site Similarity Coloring
Highly Similar Receptor regions


Dissimilar Receptor regions

## Multi-Kinase Inhibitors

## Nature Reviews | Drug Discovery Vol 8 | February, 2009

## Table 1| Selected multi-target kinase inhibitors

| Drug (company) | Target | Highest phase | Indication* |
| :--- | :--- | :--- | :--- |
| Sorafenib (Bayer and Onyx) | PDGFR, VEGFR2 and 3, FLT3, KIT, RET, RAF | Launched | Hepatocellular carcinoma, RCC, renal tumour |
| Dasatinib (BMS) | BCR-ABL, FYN, SRC, LCK, EPH | Launched | ALL, CML |
| Nilotinib (Novartis) | PDGFR, ABL, KIT | Launched | CML |
| Sunitinib (Pfizer) | PDGFR, VEGF2, FLT3, KIT | Launched | Gastrointestinal tumour, RCC |
| Motesanib (Amgen and Takeda) | PDGFR, VEGFR, KIT | Phase III | NSCLC |
| Vandetanib (AstraZeneca) | EGFR, VEGFR2, RET | Phase III | Thyroid tumour, NSCLC |
| Lestaurtinib (Cephalon) | JAK2, FLT3, TRKA | Phase III | Myeloid leukaemia |
| XL184 (BMS and Exelixis) | VEGFR2, MET, KIT, FLT3, RET, TEK | Phase III | Thyroid tumour |
| Pazopanib (GSK) | PDGFR, VEGFR1, 2 and 3, KIT | Phase III | Renal tumour, sarcoma |

*Indication given for highest phase; all drugs are also in lower phase clinical trials for other oncology indications. ALL, acute lymphoblastic leukaemia; BMS, Bristol-Myers Squibb; CML, chronic myeloid leukaemia; EGFR, epidermal growth factor receptor; GSK, GlaxoSmithKline; NSCLC, non-small-cell lung cancer; PDGFR, platelet-derived growth factor receptor; RCC, renal cell carcinoma; VEGFR, vascular endothelial growth factor receptor.

Imatinib (Gleevec: Novartis)
Gefitinib (Iressa: Astra Zeneca)

ABL, PDGFR, KIT
EGFR, (ERBB4,GAK,...) NSCLCEidogen•Sert@ôty

## Rationalizing Drug Discovery

From: Individual biological target $\rightarrow$ "Selective" compounds
To: Target combinations $\rightarrow$ Multi-target compound (combinations)


## Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from
~ 5800 journal articles/patents

- KKB Content Summary (Q2-2009):
\# of kinase targets: ~400
\# of SAR Data points: ~415,000
\# of unique kinase molecules with SAR data: ~150,000
\# of annotated assay protocols: ~19,000
\# of annotated chemical reactions: ~2,300
\# of unique kinase inhibitors: ~495,000 ( $\sim 340 \mathrm{~K}$ enumerated from patent chemistries)
- KKB Growth Rate:
- Average $15-20 \mathrm{~K}$ SAR data points added per quarter
- Average 20-30K unique structures added per quarter


## Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

## Kinase Validation Set

Three sizable datasets freely available to the research community
http://www.eidogen-sertanty.com/kinasednld.php

## About Eidogen-Sertanty

- Knowledge-Driven Solutions Provider
- Sertanty established in 2003, acquired Libraria assets
- Sertanty acquired Eidogen/Bionomix in 2005 $\rightarrow$ Eidogen-Sertanty
- \$20M invested: Libraria (\$6M), Eidogen/Bionomix (\$12M), Sertanty/ES (\$2M)
- 14 distributed FTE's (4 US and 10 India)
- Worldwide (bio)pharmaceutical customer base
- Cash-positive since 2006
- Databases \& Software - Annual Subscriptions
- TIPTM - Protein Structural Informatics Platform
- KKB ${ }^{\text {TM }} \quad$ - Kinase SAR and Chemistry Knowledgebase
- CHIP $^{\text {тм }} \quad$ - Chemical Intelligence Platform
- DirectDesign ${ }^{\text {TM }}$ Fee-For-Service
- In Silico Target Screening ("Target Fishing" and Repurposing)
- Target and compound prioritization services
- Fast Follower Design: Novel, Patentable Leads


## TIP/Kinase - 2009 Promotional Bundle

- TIP/Workgroup technology
> Behind-the-firewall with web interface and commandline utilities
> TIP database creation, administration, and update capabilities
> Optionally available module: TIP/Webservices
- TIP Kinase Family Database
$>$ Over 1300 sequences ( $\sim 500$ human) modeled w/multiple templates
$>$ Over 4000 models derived from over 1200 PDB templates
$>$ Over 7M structure and over 15M siteSimilarities
$>$ Over 620 co-complexed ligands
- One-year subscription to Kinase Knowledgebase (KKB exports)
$>$ Over 402,000 SAR datapoints from over 5,500 articles/patents


## TIP/Kinase Content



Reference: Interrogating the druggable genome with structural informatics, MolecularDiversity (2006)Eidogen-Sert(a) $\widehat{n}$ y


## TIP Content and Algorithm Engine



- Interrogating the druggable genome with structural informatics MolecularDiversity (2006)
- STRUCTFAST: Protein Sequence Remote Homology Detection and Alignment Using Novel Dynamic Programming and Profile-Profile Scoring Proteins. 2006 64:960-967
- StructSorter: A Method for Continuously Updating a Comprehensive Protein Structure Alignment Database J. Chem. Inf. Model. 2006, 46, 1871-1876
-Convergent Island Statistics: A fast method for determining local alignment score significance. Bioinformatics, 2005, 21, 2827-2831.Eidogen-Sert 1 anty


## Kinome Viewer - KKB and TIP

Data Integration

Application Integration
: Kinase Knowledgebase
: Target Informatics Platform

Kinome Viewer with the Kinase Knowledgebase (KKB)

Protocols available for KV-KKB (kkbq109-10\% sample)

- KKB-Search by Chemical Structure

> Kinase Knowledgebase (kkbq109-10\% sample)

Results Displayed in Accelrys Kinome Viewer

c SSS
© Exact

- Sim

80

Search

## Kinome Viewer (KV): Data and Application Integration

## Shaccelrys' | Kinome Viewer with the Kinase Knowledgebase (KKB) | OEdogen-Seri@ny



| Display Control |  |
| :---: | :---: |
| Radius | DataPoint |
| Colors | activity |

Representative Example


## TIP Access: One-Click Away

## Sequence 158401

Add To Project
Protein Search
"FLT4 kinase catalytic domain (Aliases: PCL, VEGFR3)"

| Sequence Headers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Accession | Locus | Database | Enzyme Family | Species |
| TK_VEGFR_FLT4 | FLT4_Hsap | kinbase |  | Homo sapiens |


| Source | Chains |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Start | stop | Identifier | Knowledge Level | \#Sites | Primary Template |
| STRUCTFAST | 1 | 325 | 182419 | 3 | 2 | 1 ywnA 62\% |
| STRUCTFAST | 1 | 325 | 198501 | 3 | 2 | 1 oecA 44\% |
| STRUCTFAST | 1 | 325 | 238701 | 3 | 1 | 1146A. $47 \%$ |
| STRUCTFAST | 1 | 325 | 296001 | 3 | 2 | $1 \mathrm{fgiA} 43 \%$ |
| STRUCTFAST | 1 | 325 | 429801 | 3 | 3 | 1 i 3 A $32 \%$ |
| STRUCTFAST | 1 | 325 | 504101 | 3 | 3 | 211 mA 45\% |
| Sequence Domains |  |  |  |  |  |  |
| Pfam ID |  |  |  |  |  | Stop |

## Amino Acid Sequence

| 1 | LHLGR | VLGYG | AFGKV | VEASA | FGIHK | GSSCD | tvavk | MLKEG | ATASE | HRALM | SELKI | LIHIG | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61 | NHLNV | VNLLG | ACTKP | QGPLM | VIVEF | CKYGN | LSNFL | RAKRD | AFSPC | AEksp | EQRGR | FRAMV | 120 |
| 121 | ELARL | DRRRP | GSSDR | VLFAR | FSkTE | GGARR | ASPDQ | EAEDI | WLSPL | TMEDL | VCYSF | QVARG | 180 |
| 181 | MEFLA | SRKCI | HRDLA | ARNIL | LSESD | VVkIC | DFGLA | RDIYK | DPDYV | RKGSA | RLPLK | mMAPE | 240 |
| 241 | SIFDK | VYTTQ | SDVOTS | FGVLL | WEIFS | LGAsP | YPGVQ | INEEF | CQRLR | DGTRM | RAPEL | ATPAI | 300 |
| 301 | RRIML | NCWSG | DPKAR | PAFSE | LVEIL |  |  |  |  |  |  |  | 325 |

## Extracting Kinase Data Sets

- Only enzymatic (homogeneous) assays with defined target
- Only high quality data (IC50, Ki, Kd)
- Standardizing chemical structures (salt forms, stereochemistry, E/Z geometry, tautomers, ionization)
- Kinase target Entrez Gene names and SwissProt accessions
- Aggregate data by structure first in an individual experiment and then globally by unique kinase and structure
$>189,119$ unique (structure target) data points (366 kinases)
> 93,121 unique structures


## Relating Kinase Targets by Compound Activity

- "ACTivity similarity" for compounds tested in common which are active for one (or both) target(s)

$$
\text { ACTsim }_{i j}=1-\frac{1}{N} \sum_{k=1}^{N>2} \frac{\left|p I C 50_{k i}-p I C 50_{k j}\right|}{\max p I C 50_{\text {diff }}}
$$

Vieth et.al. "Kinomics" Biochim Biophys Acta 2004243

- Activity cutoff $p \vee a l \geq 6.5$; minimum 20 actives per kinase pair
- Compute Minimum spanning tree (Kruskal)
> Visualization as network tree (Cytoscape)

Side note: "Activity fingerprint" (for a comprehensive activity matrix)

## Relating Kinase Targets by SARsim 'Features'

- Laplacien-modified Naïve Bayesian models using FCFP_4 fingerprints
- Measure contribution of a bit in a fingerprint for a specific outcome
- Assume all variables are independent
- A compound is scored by summing the weights of its fingerprint bits
- Kinase models compared by the Pearson correlation coefficient of the vector of the probabilistic weights (log of Avidon weights) of all fingerprint bits

Adopted from Schuffenhauer Org Biomol Chem 20043256

- Activity cutoff pIC50 > 6.5; all other compounds negative
- Select models with ROC > 0.8 and minimum 20 actives
- Compute the correlation matrix


## Kinase Target Similarity by ACTsim/SARsim



